
Partition Encryption in Linux
Matthew Gracie, Information Security Administrator, Canisius College
graciem@canisius.edu

There are two broad classes of encryption that are commonly deployed on computer 
storage. The first is partition encryption, also known as “whole-disk encryption”. This 
refers to encrypting an entire logical block device with a single key, so that it can be 
decrypted and accessed all at once. The second is filesystem-level encryption, which 
refers to individually encrypting each file on a disk, often with different keys. 

This paper deals with partition encryption in a Linux environment. By following the 
instructions herein, the reader will be able to create, mount, unmount, and otherwise 
manipulate an encrypted block device, such as a hard drive, on a computer running a 
Linux-based operating system. The instructions have been tested on computers running 
the Debian GNU/Linux operating system, but they should be transferable with little or no 
modification to Red Hat, SuSE, or other variants.

Why Encrypt?

Encryption acts as an excellent safeguard against the loss of data in an environment 
where the physical security of a system cannot be ensured. Examples are abundant.

A Linux-based server, placed at a disaster recovery site, a co-location facility, or a 
satellite campus could use an encrypted data partition to prevent access outside of the 
traditional operating system means. Even if someone pulls the hard drive from the 
machine and places it in another one as a slave, or boots from a LiveCD, the encrypted 
partitions will be unreadable without the key.

A Linux-based laptop, if stolen, would prevent the thief from retrieving the data stored on 
it. Any attempt to read the drive without the key would be unsuccessful; the only way to 
use the laptop for anything would be to reformat the drive, rendering the data on it 
unusable to the thief.

A USB flash drive or external hard drive, accidentally misplaced, would be useless to 
someone finding it unless they reformat the device and destroy the data on it.

In short, if a storage device is not completely physically secure, and the data on that 
device is worth anything at all, then encryption is a wise decision.

Please note that, like any other security measure, partition encryption is not a silver 
bullet. If a device is mounted, and the host operating system has access to it, then an 
intruder who has compromised the host operating system will have access to the data. 
Encryption does not solve problems related to unpatched application vulnerabilities, 
weak passwords, poorly implemented permissions models, social engineering, or other 
classic system administration pitfalls. It is simply one more layer in a properly deployed 
defense-in-depth strategy to defend the data on a device from a hostile or curious 



attacker.

Tools to Use

There are three basic elements that make up the partition encryption solution built into 
the 2.6 series of Linux kernels.

Device Mapper: The device mapper is an interface that allows for block devices to be 
created, or “mapped”, on top of other block devices. It is a crucial piece of kernel 
infrastructure that allows for technologies like Linux Volume Management and the 
software RAID interface, as well as the loopback file interface. This functionality is 
native to the 2.6 series of Linux kernels.

DM-Crypt: the dm-crypt subsystem in the kernel adds additional encryption capabilities 
to the device mapper outlined above. It transparently encrypts any block device, using 
tools provided by the Linux Crypto API. This means that various hashes and block 
ciphers can be used by dm-crypt, as long as the kernel in question supports them.

LUKS: Linux Universal Key Storage (LUKS) is a standard, on-disk format for storage of 
encryption keys. This means that multiple tools can read volumes that use the LUKS 
standard, and the keys are managed in a safe, standard, and well-documented fashion.

So, with these three tools, we have a method for abstracting block devices, a method for 
encryption on block devices, and a method for handling keys and passphrases. As you 
might imagine, these combine to give us a simple and powerful way to handle partition 
encryption.

Creating an Encrypted Partition

Throughout this example, I will assume that the partition to be encrypted is the first 
primary partition on the second hard drive, designated by the kernel as “/dev/hdb1”. 
These instructions should work for any block device; simply substitute the name of the 
device that you are formatting and encrypting for “hdb1” in the examples.

WARNING: Encrypting a partition will destroy all of the data that is currently 
stored on it. Do not use these directions to encrypt a partition that you are using to 
store data that you care about! Back it up first, and restore to the encrypted volume 
later.

The first thing that you need to do is make sure that your Linux installation has the proper 
tools for creating an encrypted partition. As root, run the following command:

# cryptsetup --help

This should print a few lines of text, listing all of the options available through the 
cryptsetup tool. Make sure that there are details on actions like “luksFormat”, to be sure 



that your version of cryptsetup supports the LUKS standard. If you are unable to run the 
cryptsetup command, or if the help screen does not include LUKS commands, check the 
documentation for your Linux distribution for installation instructions for these features.

Now that we know that we have the correct tool, we need to establish the partition. We 
will use the dm-crypt facility in the device mapper to create a logical partition mapped to 
our physical partition on the second hard disk. This step will ask for a passphrase; be sure 
to use common techniques for generating a passphrase (mixed case, numbers, punctution, 
and so on) and record it somewhere. There is no recovery method for a forgotten 
passphrase in LUKS.

# cryptsetup luksFormat /dev/hdb1

This will tell the system that /dev/hdb1 will be an encrypted block device that we will be 
accessing through a device mapping. By default, the volume will use AES encryption and 
use a passphrase as a key. If you would like to use a different cipher, or a key file rather 
than a passphrase, details are available in the cryptsetup man page. 

Now we need to create the device mapping:

# cryptsetup luksOpen /dev/hdb1 vault

You will be prompted for the LUKS passphrase for the device, and once that is entered, 
the mapping will be created. If you look in the /dev/mapper directory, there should now 
be a file named /dev/mapper/vault. This is the mapped block device that you will mount 
and manipulate, like any other file system.

Note: the name “vault” is purely arbitrary in this example; you can name the mapped 
device whatever you like. Many people advocate using a syntax like “mapped_device_X” 
where the X is the block device being mapped: in this case, it would be 
“mapped_device_hdb1”.

Now we need to format the filesystem. Again, all interactions with the encrypted device 
take place through the mapped block device.

# mkfs.ext3 /dev/mapper/vault

This will format the encrypted drive as an ext3 volume. Any filesystem can be used, so 
use whatever your institution has standardized on. 

Once the volume is formatted, it can be mounted as normal.

# mkdir /home2
# mount –t ext3 /dev/mapper/vault /home2

You now have a freshly formatted, encrypted partition mounted on the server at /home2. 
It can be added to /etc/fstab, shared over NFS, or otherwise manipulated in any way that a 



normal partition can be.

Future Maintenance

Obviously, the partition will need some maintenance in the future. The computer that you 
made it on is not going to just continue running forever, so at the very least, we’ll need to 
look at mounting and unmounting the encrypted partition.

To unmount the currently-mounted encrypted partition:

# umount /home2
# cryptsetup luksClose vault

This will unmount the partition from /home2 and remove the device mapping from 
/dev/mapper. This is very important, especially with removable media; if you attempt to 
remount the volume when you have not closed it, you will get an error.

To mount an encrypted partition:

# cryptsetup luksOpen /dev/hdb1 vault
# mount –t ext3 /dev/mapper/vault /home2

This will mount an encrypted partition that was previously formatted on the local 
machine.

Obviously, you don’t want to have to manually mount this partition every time that you 
reboot the machine; it’s onerous on a server-class machine, and downright unacceptable 
on a personal computer or a laptop. One option is to add the lines above to your rc.local, 
but the accepted method is to edit two other files in the /etc directory.

In /etc/fstab, add the mapped device as you would any other disk:

/dev/mapper/vault /home2 auto defaults 0 0

In /etc/crypttab, add the cryptographic settings for the device:

vault /dev/hdb1 none luks,retry=5

This will tell the computer to map /dev/mapper/vault to /dev/hdb1 on boot and give the 
user five tries to enter the passphrase. If all five entries are incorrect, the system boot will 
continue but the partition will not be mounted.

Finally, it is possible to add additional passphrases to the partition. To do so, use the 
command:

# cryptsetup luksAddKey /dev/hdb1



Each device using LUKS can have up to eight different passphrases; if your security 
policy states that you need to have an “emergency only” passphrase in escrow, this would 
be a good way to do it.

Conclusion

Partition encryption in Linux is fairly simple to implement, especially given the 
additional security that it provides. This document should have given you all of the 
information that you need to set up and experiment with an encrypted block device. For 
more information, check out the man pages for cryptsetup and crypttab. Additionally, 
there is good information at the following web sites:

LUKS Home Page
http://luks.endorphin.org/

dm-crypt wiki: LUKS
http://www.saout.de/tikiwiki/tiki-index.php?page=LUKS

device-mapper resource page
http://sources.redhat.com/dm/


